Friday, November 1, 2019
Application of Enginerring Principles Essay Example | Topics and Well Written Essays - 2500 words
Application of Enginerring Principles - Essay Example However, this increase in deflection is going to be minimal. iii. Discuss the possibilities of errors occurring in the tensile test. Errors may be introduced into the tensile test due to various reasons such as: incorrect measurement of length of the sample due to incorrect reading from vernier calliper due to: zero error; parallax error. errors in dial calliper; zero error during initial calibration; parallax error while reading dial calliper. c. The figure shows a bar consisting of four lengths. i. Find the load carried by the bar at B, if the total extension is 0.063 mm. ii. Find the total extension of the bar, if loads applied at both ends are increased by 10%. If the loads at both ends are increased by 10% then inserting the new values into (1) gives: Take E = 2 x 105 N/mm2 for both the cases. d. A load of 500kN is applied on a short concrete column 400mmx500mm. The column is reinforced with 3 steel bars of 20mm diameter and 3 bars of 30mm diameter. If the modulus of elasticity for steel is 20 times that for concrete, find the stresses in both concrete and steel bars. Areas for concrete and steel bars are: AS = 400 x 500 = 2 x 105 mm2 AC = 3?(10)2 + 3?(15)2 = 3063.45 mm2 Solving simultaneously we get: Now: e. Discuss the load shared by composite cylinder will be more than the conventional cylinder. A composite cylinder can bear greater load than a conventional cylinder. This is due to the presence of materials that have greater tensile strength than the majority composing material. For example, in the case of steel reinforced steel bars, the steel has a greater tensile strength and being stronger can bear larger loads than what concrete could otherwise bear. Moreover, the steel in question tends to deform as much as the concrete which helps it to bear greater loads too. Another reason for composite cylinders being better at load bearing is because the constituent materials are distinct and are trying to move past each other within the overall structure. Th e presence of friction between the composing materials of a cylinder enable it to take larger loads too because the friction would need to be overtaken if the cylinder were to disintegrate. Question Two a. Based on the results obtained from Shear Force Measurement Experiment in the laboratory: i. Name the type of beam used. ii. Critically analyse the variations of theoretical shear force and experimental shear force at the sensor for the given load condition in the laboratory. iii. Usually measuring instruments absorbs some input energy to respond. Discuss how this affects the measurement. Measuring instruments absorb some of the energy that is produced in an experimental or other situation. The instruments need energy to generally overcome their own internal inertias. The absorption of energy tends to lower the amount of force actually available for measurement. However, in most situations the instruments are kept simple and light enough to ensure that the loss of energy is not t oo high to affect the actual measurement process. iv. Analyse the indication of a sudden change in shear force from negative to positive value. Positive shear tends to produce positive bending with geometrical minimas becoming apparent. On the other hand, negative shear tends to produce negative bending with geometrical maximas becoming apparent. As soon as the shear changes from negative to positive, the shape of the sag in the object changes as mentioned
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment